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Abstract. Recently, ranking-based clustering on heterogeneous information 
network has emerged, which shows its advantages on the mutual promotion of 
clustering and ranking. However, these algorithms are restricted to information 
network only containing heterogeneous relations. In many applications, net-
worked data are more complex and they can be represented as a hybrid network 
which simultaneously includes heterogeneous and homogeneous relations. It is 
more promising to promote clustering and ranking performance by combining 
the heterogeneous and homogeneous relations. This paper studied the ranking-
based clustering on this kind of hybrid network and proposed the ComClus al-
gorithm. ComClus applies star schema with self loop to organize the hybrid 
network and uses a probability model to represent the generative probability of 
objects. Experiments show that ComClus can achieve more accurate clustering 
results and do more reasonable ranking with quick and steady convergence. 

Keywords: Clustering, Ranking, Heterogeneous Information Network,  
Probability Model. 

1 Introduction 

Information network analysis is an increasingly important direction in data mining in 
the past decade. Many analytical techniques have been developed to explore struc-
tures and properties of information networks, among which clustering and ranking are 
two primary tasks. The clustering task [1] partitions objects into different groups with 
similar objects gathered and dissimilar objects separated. Spectral method [1,4] is 
widely used in graph clustering. The ranking task [6,10,12] evaluates the importance 
of objects based on some ranking function, such as PageRank [12] or MultiRank [10]. 
Clustering and ranking are often regarded as two independent tasks and they are ap-
plied separately to information network analysis.  However, integrating clustering 
and ranking makes more sense in many applications [2-3,11]. On one hand, the know-
ledge of important objects in a cluster helps to understand this cluster; on the other 
hand, knowing clusters is benefited to make more elaborate ranking. Some prelimi-
nary works have explored this issue [11].  
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Although it is a promising way to do clustering and ranking together, previous ap-
proaches confine it to a “pure” heterogeneous information network which does not 
consider the homogeneous relations among same-typed objects. For example,  
RankClus [2] only considers relations between two-typed objects; NetClus [3] just 
considers relations among center type and attribute types. However, in many applica-
tions, the networked data are more complex. They include heterogeneous relations 
among different-typed objects as well as homogeneous relations among same-typed 
objects. Taking bibliographic data as an example which is shown in Fig. 1(a), papers, 
venues, authors and their relations construct a heterogeneous information network. 
Simultaneously, the network also includes the citation relations among papers and the 
social network among authors. It is important to cluster on such a hybrid network 
which includes heterogeneous and homogeneous relations at the same time. The hybr-
id network can more authentically represent real networked data. Moreover, more 
information from heterogeneous and homogeneous relations is promising to promote 
the performance of clustering and ranking.  

Although it is important to integrate clustering and ranking on the hybrid network, 
it is seldom studied due to the following challenges. 1) It is difficult to effectively 
organize networked data. The hybrid network is more complex than either of them. 
The way to organize the network not only needs to effectively represent objects and 
their relations but also benefits for clustering and ranking analysis. 2) It is not easy to 
integrate information from heterogeneous and homogeneous relations to improve 
clustering and ranking performances. It is obvious that more information from differ-
ent sources can help to obtain better performances. However, we need to design an 
effective mechanism to make full use of information from these two networks.  

In this paper, we study the ranking based clustering problem on a hybrid network 
and propose a novel ComClus algorithm to solve it. A star schema with self loop is 
applied to organize the hybrid network. The ComClus employs a probability model to 
represent the generative probability of objects and the experts model and generative 
method are used to effectively combine the information from heterogeneous and ho-
mogeneous relations. Moreover, through applying the probability information 
of objects, we propose ComRank to identify the importance of objects based on 
ComClus. Experiments on DBLP show that ComClus achieves better clustering and 
ranking accuracy compared to well-established algorithms. In addition, ComClus has 
better stability and quicker convergence. 
 

 
(a) Bibliographic data       (b)Hybrid network          (c)Star schema with self loop    (d)Clusters on hybrid network 

Fig. 1. An example of clustering on bibliographic data 
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2 Problem Formulation  

In this section, we give the problem definition and some important concepts used in 
this paper. 

Definition 1. Information Network. Given ܭ ൅ 1  types of nodes, ܸ௞ is a vertex set, 
denoted by ܸ௞ ൌ ሼݒ଴௞, ,ଵ௞ݒ ,ଶ௞ݒ … . . . , ௡௞ݒ ௡௞ሽ, whereݒ  represents the ݊-݄ݐ node belong-
ing to the ݇-݄ݐ type. An information network can be represented as a weighted net-
work Gൌ൏ ܸ, ,ܧ ܹ ൐, if ܸ ൌ ڂ ܸ௞௄௞ୀ଴ . E is a binary relation on ܸ , and ܹ  is a 
weight mapping from an edge eאE to a real number wא ܴା. If ܭ ൒ 2 the informa-
tion network G is heterogeneous information network; and homogeneous informa-
tion network when ܭ ൌ 1.  

For a network with multiple types of nodes, K-partite network [7,9] and star schema 
[3] are widely used. These network structures only have heterogeneous relations 
among different-typed nodes, without considering the homogeneous relations among 
same-typed nodes. However, real networked data are more complex hybrid networks 
where links exist not only in heterogeneous nodes but also in homogeneous nodes. So 
we propose the star schema with self loop for this kind of networks.  

Definition 2. Star schema with self loop network. An information network ܩ ൌ൏ܸ, ,ܧ ܹ ൐ on K+1 types of nodes ܸ ൌ ڂ ܸ௞௄௞ୀ଴  is called star schema with self loop 
network, ܧ ൌ ௛௢௠௢ܧ ڂ ௛௢௠௢ܧ ௛௘௧௘  andܧ ת ௛௘௧௘ܧ ൌ ݁׊  If .׎ ൌ ൏ ,௜଴ݒ ௝௞ݒ ൐ א ௛௘௧௘ܧ ௜଴ݒ , א ܸ଴ ٿ ௝௞ݒ א ܸ௞ሺ݇ ് 0ሻ . If ׊e ൌ൏ ,௜௞ݒ ௝௞ݒ ൐ א ௛௢௠௢ܧ ௜଴ݒ , א ܸ଴ ٿ ௝଴ݒ א ܸ଴ ( ݇ ൌ  0) or ݒ௜௞ א ܸ௞ ٿ ௝௞ݒ א ܸ௞(݇ ് 0). Type ܸ଴is called the center type (denoted as ܸ௖), and ܸ௞ሺ݇ ് 0ሻ is called dependent types (denoted as ܸௗ).  ܧ௛௢௠௢ is the links set among the same-typed nodes (called homo-link) and ܧ௛௘௧௘ is 
the links set among the different-typed nodes (called hete-link). Then the hete-link 
can be written as e<ݒ௜௖,  ௝ௗ>, representing the link between center node and dependentݒ
node. The homo-link is the link between two same-typed nodes, which is denoted as 
e<ݒ௜௖ ௜ௗݒ>௝௖> or eݒ,  .<௝ௗݒ,

Fig. 1 shows such an example. For a complex bibliographical data (see Fig. 1(a)), 
we can organize it as a hybrid network which includes heterogeneous network among 
different layers and homogeneous network on the same layer in Fig.1 (b). As shown 
in Fig. 1(c), the hybrid network can be represented with a star schema with self loop 
where “paper” is the center type, while “venue” and “author” are dependent types.  

Now, we can formulate the problem of clustering on hybrid network. Given a net-
work ܩ ൌ൏ ܸ, ,ܧ ܹ ൐, ܸ ൌ ڂ ܸ௞௄௞ୀ଴  and the cluster number N, our goal is to find a 
clusters set ܥ ൌ ڂ ௡ே௡ୀଵܥ , where ܥ௡ is defined as ܥ௡ ൌ൏ ,ᇱܩ ௡ܲ ൐. ܩᇱis a subnet of 
G, ܧᇱ ك ,ܧ ܸᇱ ك ܸ  and ݁׊ ൌ൏ ,௜௣ݒ ௝௤ݒ ൐א ᇱܧ . The probability function ௡ܲ 

represents the possibility that node ݒ௜௣  belongs to clusterܥ௡ , ௡ܲሺݒ௜௣ሻ א ሾ0,1ሿ , and ∑ ௡ܲሺݒ௜௣ሻே௡ୀଵ  = 1. In our solution, we restrict probability function of center node ௡ܲሺݒ௜௣ሻ א ሼ0,1ሽ, and for dependent node ݒ௝ௗ , ௡ܲ is the successive probability measure 
from 0 to 1. 
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3 The ComClus Algorithm  

After introducing the basic framework of ComClus, this section describes the Com-
Clus in detail and then proposes ComRank for estimating the importance of objects. 

3.1 The Framework of ComClus 

The basic idea of ComClus is to determine the memberships of center nodes and then 
estimate the memberships of dependent nodes by center nodes. We consider that the 
probability of center node is estimated by two probabilities: homogeneous probability 
and heterogeneous probability. The homogeneous probability of center node depends 
on its homo-links. The heterogeneous probability of center node is generated by the 
dependent nodes that are correlated with it. In order to co-consider the heterogeneous 
and homogeneous probability for center nodes, generative method and experts model 
are used to mix these two types information. Finally, we estimate the posterior proba-
bility for center node according to the Bayesian rule and reassign the memberships of 
center nodes. The ComClus will iteratively calculate posterior probability until the 
memberships do not change. Algorithm 1 shows the basic framework of ComClus.  
 

Algorithm 1. ComClus: Detecting N clusters on hybrid information network 
Input: Cluster number N and hybrid network G 
Output: Membership of center node, the posterior probability of dependent node 
1:Begin: 
2: Randomly partition on network G 
3: Calculate global probability of center node for smoothing:  ሻܩ|௜௖ݒሺ݌
4: repeat 
5:   foreach subnet Gnك G 
6:     Calculate the homogeneous probability of center node: ݌ሺ ݒ௜௖|ܥ,  ௡ሻܩ
7:     Calculate the conditional probability of dependent node: ݌൫ݒ௜ௗหܩ௡൯ 
8:     Calculate the heterogeneous probability of center node: ݌ሺݒ௜௖หܦ௜,  ௡ሻܩ
9:     Calculate the mixed probability: ݌ሺݒ௜௖|ܩ௡ሻ 
10:   end 12:   Calculate the center node posterior probability: ݌ሺܩ௡|ݒ௜௖ሻ and Reassign 
13: until ܦሬሬԦሺ ௜ܸ௖ሻ convergence obtained 
14: Calculate the dependent node posterior probability:  ௜ௗሻݒ|௡ܩሺ݌
15:End 
 

3.2  Homogeneous Probability for Center Node 

The homogeneous probability of ݒ௜௖ depends on its homo-links and denotes as ݌ሺ ݒ௜௖|ܥ, ሻܩ ,ܥ|௜௖ݒ ሺ݌ . ሻܩ  represents the fraction of links that the center node ݒ௜௖   
connects to other center nodes on G. This idea is inspired by a general phenomenon 
that a node has higher probability to connect with nodes within the same cluster.  
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For convenience, ݄݃݁݀݋ሺ ݒ௜௖|ܩሻ denotes the number of homo-links of ݒ௜௖  and the 
number of in-degree of center node ௜௖ݒ   on homogeneous network is denoted as ݅݊ሺݒ௜௖|ܩሻ. 

,ܥ|௜௖ݒ ሺ݌  ሻܩ ൌ  ௛௢ௗ௘௚ሺ ௩೔೎|ீሻ∑ ௛௢ௗ௘௚ሺ ௩೔೎|ீሻ |ೇ೎|೔సభ  (1) 

ሻܩ|௜௖ݒ ሺ݁ݐܴܽ݀݁ݐ݋ݑܳ  ൌ ௜௡൫ ௩೔೎|ீ൯∑ ௜௡൫ ௩೔೎|ீ൯|ೇ೎|೔సభ  (2) 

The value of ܳ݁ݐܴܽ݀݁ݐ݋ݑሺݒ௜௖|ܩሻ  is calculated by the quoted times of ݒ௜௖  on G, 
which will be used to rank (in Sect.3.7 Eq. (11)) and filter the unimportant nodes (in 
Sect.3.3 Eq. (3)) in our algorithm. The center node  ݒ௜௖  has higher possibility to be 
assigned into a cluster with higher ݌ሺ ݒ௜௖|ܥ,  ሻ. Therefore, the clustering result willܩ
benefit from the homogeneous information. 

3.3 Conditional Probability for Dependent Node 

We consider that the heterogeneous probability of center node ݒ௜௖  is generated by its 
related dependent nodes ݒ௜ௗ. Therefore, we need to estimate the probability of ݒ௜ௗ, 
which can be represented as ݌൫ݒ௜ௗหܩ൯ ൌ ሻܩ|ሺ݀݌ ൈ , ௜ௗห݀ݒ൫݌  ൯. The probability ofܩ

dependent type ݀ being selected is ݌ሺ݀ |ܩሻ ൌ |௏೏||௏| , where |ܸௗ| is the number of nodes 

in dependent type d layer, and |ܸ| is the number of all nodes in G. After the type ݀  being selected, the probability ݌൫ݒ௜ௗห݀ ,  ൯ can be estimated. We utilize the twoܩ

dependent types  ݀௔, ݀௕  to mutually estimate the probability for ݌൫ݒ௜ௗೌห݀௔ ,  ൯ܩ

and ݌൫ݒ௜ௗ್ห݀௕ , ௜ܦ .൯ܩ  is the related dependent type set of ݒ௜௖ . Take ݌൫ݒ௜ௗೌห݀௔ ,  ൯ asܩ

an instance. By taking advantage of the homogeneous information of ݒ௜ௗೌ, we set ݌൫ݒ௜ௗೌห݀௔ , ൯ܩ ൌ ௛௢ௗ௘௚ሺ௩೔೏ೌ|ீሻ∑ ௛௢ௗ௘௚ሺ௩೔೏ೌ|ீሻ |ೇ೏ೌ|೔సభ  at the beginning of iteration. We consider the 

center node ݒ௜௖  is the medium between ݒ௜ௗೌ and ݒ௜ௗౘ  . Naturally, an important me-
dium  ݒ௜௖  should have a higher ܳ݁ݐܴܽ݀݁ݐ݋ݑሺ ݒ௜௖|ܩሻ than an ordinary one. Besides, 
we use ߠ  as a filter factor to expand the ܳ݁ݐܴܽ݀݁ݐ݋ݑሺ ݒ௜௖|ܩሻ  gap among 
ent ݒ௜௖ . Repeat calculating (4) and (5) until the convergence is obtained. 

ߠ  ൌ ൝1 ݂݅ ܳ݁ݐܴܽ݀݁ݐ݋ݑሺ ݒ௜௖|ܩሻ ൏ ሻܩ|௜௖ݒ ሺ݁ݐܴܽ݀݁ݐ݋ݑܳ ݂݅ ߠሻܩ|ሺܸ௖݁ݐܴܽ݀݁ݐ݋ݑܳ݃ݒܽ ൒  (3)                                                                           ݁ݏ݅ݓݎ݄݁ݐ݋ ሻ0ܩ|ሺܸ௖݁ݐܴܽ݀݁ݐ݋ݑܳ݃ݒܽ

ሻܩ|௜௖ݒ ሺ݁ݎ݋ܿݏ  ൌ ߠ  ൈ ሻܩ|௜௖ݒ ሺ݁ݐܴܽ݀݁ݐ݋ݑܳ ൈ ∑ ௘ழ௩೔೎, ௩೔೏್வൈ௣ቀ௩೔೏್ቚௗ್ ,ீቁ௛௘ௗ௘௚ሺ௩೔೏್ሻ|௏೏್|௜ୀଵ  (4) 

, ௜ௗೌห݀௔ݒ൫݌  ൯ܩ ൌ ∑ ௘ழ௩೔೎,௩೔೏ೌவൈ௦௖௢௥௘ሺ ௩೔೎|ீሻ௛௘ௗ௘௚ሺ௩೔೏౗ሻ|௏೎|௜ୀଵ  (5) 
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where ݄݁݀݁݃ሺݒ௜ௗೌሻ  is the number of hete-links of ݒ௜ௗೌon ܩ.  We run the same 

process for ݒ௜ௗ್  to get the probability ݌൫ݒ௜ௗೌห݀௔ ,  ”൯. As a result, the “productiveܩ
dependent nodes and the “barren” nodes can be distinguished obviously. Normaliza-
tion method can be used when necessary. 

3.4 Heterogeneous Probability for Center Node 

After conditional probability of dependent nodes being figured out, we can estimate 
the heterogeneous probability for ݒ௜௖ . Here, we make an independency assumption 
that the dependent nodes generate the heterogeneous probability of center node inde-
pendently. Given dependent node probabilities which are related to ݒ௜௖ , the heteroge-
neous probability of center node ݒ௜௖ can be denoted as ݌ሺ ݒ௜௖|ܦ௜,  .ሻܩ

,௜ܦ௜௖หݒሺ݌  ሻܩ ൌ ∏ ∏ , ௜ௗห݀ݒ൫݌ ൯|௏೏|௜ୀଵ஽೔ௗܩ  (6) 

3.5 Mixed Probability for Center Node 

Until now, we obtain the homogeneous and heterogeneous probability of center 
node ݒ௜௖. Next, the major difficulty in estimating the probability measure is how to 
jointly consider the homogeneous and heterogeneous distribution of center nodes. To 
mix the two distributions, we employ two methods: a generative method of center 
node and a mixture of experts model [5]. 

In the generative method, we consider the center node ݒ௜௖  is generated by two 
parts: the homogeneous and heterogeneous information of ݒ௜௖ . The former is ݌ሺ ݒ௜௖|ܥ, ,௜ܦ௜௖หݒሺ݌ ሻ and the latter isܩ  ሻ. We can calculate the conditional probabilityܩ
on hybrid network G as follows: 

,ܥ|௜௖ݒ ሺ݌ = ሻܩ|௜௖ݒሺ݌  ሻܩ ൈ ,௜ܦ௜௖หݒሺ݌  ሻ (7)ܩ

In experts model, we regard the homogeneous and heterogeneous information of ݒ௜௖  
as “homogeneous expert” and “heterogeneous expert”. Then we can evaluate mixed 
probability of center node according to its own distribution. The mixture of experts 
model is denoted as follows: 

ሻܩ|௜௖ݒሺ݌  ൌ ∑ ሻெ௠ୀଵܩ|௜௖ݒ௠ሺ݌௠ߨ  (8) 

where ܯ ൌ 2 represents the number of experts. If ݉ ൌ 1, the homogeneous expert 
takes into effect: ݌ଵሺݒ௜௖|ܩሻ= ݌ሺ ݒ௜௖|ܥ, ݉ ሻ. Ifܩ ൌ 2, the heterogeneous expert is acti-

vated as: ݌ଶሺݒ௜௖|ܩሻ ൌ ,௜ܦ௜௖หݒሺ݌  ሻܩ ௠ߨ . ൌ ௣೘൫௩೔೎หீ൯௣ሺா೘ሻ∑ ௣೘൫௩೔೎หீ൯௣ሺா೘ሻಾ೘సభ  can be seen as the 

weight of corresponding expert, and we adopt Softmax function to compute it. ݌ሺܧ௠ሻ 
is the weight of expert m, which is proportional to the number of heter-links or homo-
links of  ݒ௜௖ . For example, the weight of homogeneous expert of  ݒ௜௖  is calculated by 

the following formula: ݌ሺܧଵሻ = 
௛௢ௗ௘௚൫௩೔೎|ீ൯ାଵ௛௢ௗ௘௚൫௩೔೎|ீ൯ା∑ ௛௘ௗ௘௚ሺ௩೔೏|ீ|ವ೔|೏ ሻ . Because we only have 



 Integrating Clustering and Ranking on Hybrid Heterogeneous Information Network 589 

 

two experts, the ݌ሺܧଶሻ is simply set as 1- ݌ሺܧଵሻ. Obviously, the weight is dynamic 
for each ݒ௜௖ . 

Both methods can evaluate the conditional probability of center node, which can be 
applied to different scenarios. The generative method equally treats the homogeneous 
and heterogeneous information, because it simply products homogeneous and hetero-
geneous probability. Therefore, the generative method is suitable for the hybrid net-
work with the same scales of homogeneous and heterogeneous relations. The mixture 
of experts model can dynamically adjust the weights of distributions (by ߨ௠). As a 
result, the method is more suitable for the hybrid network of which the homogenous 
and heterogeneous parts have different size. 

Besides, to avoid zero probabilities, we smooth the distribution by the following 
formula: ݌ሺݒ௜௖|ܩ௡ሻ ൌ ௡ሻܩ|௜௖ݒሺ݌ߣ ൅ ሺ1 െ -is a smoothing para ߣ ሻ, whereܩ|௜௖ݒሺ݌ሻߣ
meter. G is the whole hybrid network and ܩ௡ is the n-th subnet. 

3.6 Posterior Probability for Nodes  

In the previous subsection, we get the conditional probability of center node ݒ௜௖ by 
mixing two distributions. Now, we need to calculate the posterior probability ݌ሺܩ௡|ݒ௜௖ሻ for each  ݒ௜௖ , and reassign the memberships for center nodes. The posterior 
probability of center node can be calculated by Bayesian rule: ݌ሺܩ௡|ݒ௜௖ሻ ௡ሻܩ|௜௖ݒሺ݌ן  ൈ  ௡ is not fixed. For theܩ ௡ሻ represents the cluster size. However, the size of clusterܩሺ݌ ௡ andܩ ௡ሻ is the conditional probability in clusterܩ|௜௖ݒሺ݌ ௡ሻ, whereܩሺ݌
purpose of getting the ݌ሺܩ௡ሻ, the EM algorithm can be used to get the local optimum ݌ሺܩ௡ሻ by maximizing the log likelihood of center nodes in different areas. 

݃݋݈  ܲ ൌ ∑ logሾ∑ ௡ሻܩ|௜௖ݒሺ݌ ൈ ௡ሻேାଵ௡ୀଵܩሺ݌ ሿ|௏೎|௜ୀଵ  (9) 

where |ܸ௖| is the size of ܸ௖, and N+1 represents the global distribution on G. The 
target is to maximize  ݈݃݋ ܲ and two iterative steps can be set to optimize the value P. 

We set ݌଴ሺܩ௡ሻ ൌ ଵேାଵ before the first iteration. The following two steps run iterative-

ly until the convergence is obtained. ݌௧ሺܩ௡|ݒ௜௖ሻ ן ௡ሻܩ|௜௖ݒሺ݌ ൈ ௡ሻܩ௧ାଵሺ݌ ;௡ሻܩሺ݌ ൌ∑ ௣೟ሺீ೙|௩೔೎ሻ|௏||௏|௜ୀଵ . Finally, we will have a ܰ dimensional indicator vector ܦሬሬԦሺݒ௜௖ሻ, which 

is made up of posterior probability of ݒ௜௖ . Then we can calculate the indicator of 
membership for each center node with K-means.  

After the iterative process is finished, the posterior probability of dependent node ݌൫ܩ௡หݒ௜ௗ൯ can be evaluated by the average posterior probability of center nodes con-
necting with ݒ௜ௗ. The notation ܵ௜ is a set of center nodes connecting with ݒ௜ௗ  and |ܵ௜| is the size of set ܵ௜. 
௜ௗ൯ݒ௡หܩ൫݌  ൌ  ∑ ௣൫ீ೙ห௩೔೎൯|ௌ೔||ௌ೔|௜ୀଵ  (10) 
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3.7 Ranking for Nodes  

As an additional benefit for ComClus, the posterior probabilities of nodes can be used 
for ranking nodes. Once the cluster process is finished, we can further figure out the 
rank of nodes in their cluster. We proposed a function (called ComRank) to evaluate 
the importance of nodes. 

 ܴܽ݊݇ሺݒ௜௖|ܩ௡ሻ ൌ ሻܩ|௜௖ݒሺ݁ݐܴܽ݀݁ݐ݋ݑܳ ൈ  ௜௖ሻ (11)ݒ|௡ܩሺ݌

where ݌ሺݒ௜௖|ܩ௡ሻ is the probability of center node ݒ௜௖ . Generally, the rank of center 
node is proportional to its ܳ݁ݐܴܽ݀݁ݐ݋ݑሺݒ௜௖|ܩሻ. It is natural in many applications. 
Taking bibliographic network as an example, the goodness of a paper is decided by 
the number of citations to a large extent. Another factor of rank function is the post-
erior probability, which can be seen as a cluster coefficient and represents the degree 
of membership in that cluster. The rank of dependent node ݒ௜ௗ can be computed ac-
cording to the rank of center nodes connecting with it.  

 ܴܽ݊݇ሺݒ௜ௗ|ܩ௡ሻ ൌ ∑ ܴܽ݊݇ሺݒ௜௖|ܩ௡ሻหௌ೔ห௜ୀଵ ൈ  ௜ௗሻ (12)ݒ|௡ܩሺ݌

4 Experiment  

In this section, we evaluate the effectiveness of our ComClus algorithm, and compare 
it with the state-of-the-art methods on two data sets. 

4.1 Data Set 

The DBLP is a dataset of bibliographic information in computer science domain. We 
use it to build a hybrid network with three-typed nodes: papers (center type), venues 
(dependent type) and authors (dependent type). Homo-links among authors form a co-
author network, and homo-links among papers form a paper citation network. Hete-
links are the writing relation between authors and papers and the publication relation 
between venues and papers. We extract venues from different areas according to the 
categories of China Computer Federation (http://www.ccf.org.cn). Moreover, CCF 
provides three levels for ranking venues: A, B, C. The class A is top venues, such as 
KDD in data mining (DM). The class B is some famous venues such as SDM, ICDM. 
The class C is admitted venues such as WAIM. In the experiments, we extract two 
different-scaled subsets of the DBLP which are called DBLP-L and DBLP-S. 

The DBLP-S is a small size dataset and it includes three areas in computer domain: 
database, data mining, and information retrieval. There are 21venues (7 venues for 
each area, covering three levels), 25,020 papers and 10,907 authors in DBLP-S. Two 
or three venues for each level are picked out. 

The DBLP-L is a large dataset. There are eight areas included, which are computer 
network, information security, computer architecture, theory, software engineering & 
programming language, artificial intelligence& pattern recognition, computer  
graphics, data mining& information retrieval &database. There are 280 venues  
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(35 venues for each area), 275,649 papers, and 238,673 authors. For each area, five 
venues are in A level and fifteen venues are selected in B or C level. 

In these two datasets, venues are labeled with their research areas. Moreover, in 
DBLP-S, we randomly label 1031 papers and 1295 authors with three research areas, 
which are used to evaluate the clustering accuracy. All the results are based on 20 
runnings, and average results are shown. 

4.2 Clustering Accuracy Comparison Experiments 

For accuracy evaluation, we apply our method to cluster on both DBLP-S and DBLP-
L. We compare ComClus with the representative ranking-based clustering algorithm 
NetClus which can be applied in heterogeneous networks organized as star schema. 
The smoothing parameter ߣ is fixed at 0.7 in both two algorithms. The filter factor ߠ 
in ComClus is 3. The clustering accuracy of paper is the fraction of nodes identified 
correctly. For author and venue nodes, the accuracy is the posterior probability frac-
tion of nodes identified correctly. Results are shown in Table 1. The two different 
mixture methods of ComClus both have higher accuracy than NetClus. The lower 
deviation of ComClus implies that ComClus is steadier than NetClus. The results 
show that, the additional homogeneous relation utilized by ComClus is helpful for 
improving its accuracy as well as stability. In addition, ComClus with experts model 
achieves better performance than ComClus with generative method. We think the 
reason is that experts model considers the weight of heterogeneous and homogeneous 
information. In the following experiments, we use ComClus with experts model as the 
standard version of ComClus.  

Table 1. Clustering accuracy comparison for different-typed nodes   

Accuracy 
ComClus(experts method) ComClus(generative method) NetClus 

Mean Dev. Mean Dev. Mean Dev. 
Paper(DBLP-S) 0.774 0.019 0.766 0.021 0.715 0.066 
Venue(DBLP-S) 0.855 0.018 0.777 0.028 0.739 0.067 
Author(DBLP-S) 0.731 0.018 0.680 0.016 0.697 0.052 
Venue(DBLP-L) 0.681 0.041 0.648 0.046 0.579 0.084 

 
Since the hybrid network includes homogeneous network, we compare ComClus 

with those clustering algorithms on homogeneous network, where a representative 
spectral clustering algorithm Normalize Cut [4] is employed. We design the similarity 
of two nodes ሺ݅, ݆ሻ as: ܵሺ݅, ݆ሻ ൌ ሺݏ݋ܿ ௜ܸ, ௝ܸሻ, where ௜ܸ is the adjacent vector of node 
i. The result is shown in Table 2, which clearly illustrates that ComClus is better than 
Normalized Cut. ComClus combines the information from homogeneous and hetero-
geneous relations. It makes ComClus outperform Normalized Cut which only uses 
homogeneous network information.  

Table 2. Clustering accuracy comparison on homogeneous network 

Accuracy ComClus Normalized Cut 
Paper Accuracy 0.787 0.457 
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4.3 Ranking Accuracy Comparison Experiment 

On DBLP-L, we make a ranking accuracy comparison between ComRank and Autho-
rithyRank which is a rank method in NetClus[3]. In this application, it is hard to defi-
nitely compare the goodness of two venues, whereas we can roughly distinguish their 
levels. For example, it is difficult to compare the ranking of SDM and ICDM. But we 
can safely say that SDM and ICDM are on the same level and they are worse than the 
top level venues (e.g., KDD) and better than the common level venues (e.g., WAIM). 
Inspired by RankingLoss measure [8], we define LevelRankingLoss to evaluate the 
disorder ratio of object pairs on their levels and it is abbreviated as LRLoss. Without 
loss of generality, we define LRLoss on bibliographic data. First, we define a triple to 
represent a venue:ܴ݈ܽ݊݇ܶ݁݌ݑ௜ ൌ൏ ,௜ܥ ,௜ܮ ܴ௜ ൐, where ܥ௜ represents a venue, ܮ௜  is 
the level of ܥ௜, ܮ௜ א ሼA, B, Cሽ (the recommended level of CCF). ܴ௜ is the rank num-
ber of ܥ௜ generated by the algorithms(the smaller, the better). The LRLoss is defined 
as follows. 

ݏݏ݋ܮܴܮ  ൌ ଵோ ∑ |௅௢௦௦௉௔௜௥೔||௅௢௦௦௉௔௜௥೔|ା|௅௢௦௦௉௔ప௥ഢതതതതതതതതതതതതതത|ோ௜ୀଵ  (13) 

where R is the size of Cartesian product of ܴ݈ܽ݊݇ܶ݁݌ݑ  set and  ݎ݅ܽܲݏݏ݋ܮ௜ ൌ ሼ൏ܴ݈ܽ݊݇ܶ݁݌ݑ௜, ௝݈݁݌ݑܴܶ݇݊ܽ ൐ ௜ܮ| ൏ ,௝ܮ ܴ௜ ൐ ௝ܴ ܮ ݎ݋௜ ൐ ,௝ܮ ܴ௜ ൏ ௝ܴሽ. Here, ݎ݅ܽܲݏݏ݋ܮ௜  
denotes the complementary set. |ݎ݅ܽܲݏݏ݋ܮ௜|  is the number of misordered pairs for ܴ݈ܽ݊݇ܶ݁݌ݑ௜. For example, ܴ݈ܽ݊݇ܶ݁݌ݑଵ= <KDD, A, 2>, ܴ݈ܽ݊݇ܶ݁݌ݑଶ=<ICDM, B, 1> 
can be seen as one LossPair for ܴ݈ܽ݊݇ܶ݁݌ݑଵ.  

We select the top 5 and top 10 venues in different areas and then calculate LRLoss 
for them. Additionally, we also compare the accuracy of the global rank on both 
ComRank and NetClus. Results are shown in Fig2. 
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(a) 3 areas top5 venues on DBLP-S  (b) 3 areas top10 venues on DBLP-L (c) 8 areas top 10 venues on DBLP-L 

Fig. 2. Ranking accuracy comparison (The smaller LRLoss, the better) 

The results clearly show that ComRank better ranks these venues, since its LRLoss is 
lower than that of AuthorityRank on all research areas. We think the additional homoge-
neous information utilized by ComRank contributes to its better ranking performance.  

4.4 Case Study 

In this section, we further show the performance of ComRank with a ranking case 
study.  
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Table 3. Top 15 venues with global rank on DBLP-S 

ComRank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Venue SIGMOD VLDB SIGIR ICDE KDD PODS WWW CIKM ICDM EDBT PKDD WSDM PAKDD WebDB DEXA 

#Papers 2428 2444 2509 2832 1531 940 1501 2204 1436 747 680 198 1030 972 1731 
Level A A A A A A B B B B B B B C C 

AuthorityRank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Venue VLDB ICDE SIGMOD SIGIR KDD WWW CIKM ICDM PODS DEXA PAKDD EDBT PKDD WSDM ECIR 

#Papers 2444 2832 2428 2509 1531 1510 2204 1436 940 1731 1030 747 680 198 575 

Level A A A A A B B B A C B B B B C 

 
Table 3 shows the top 15 venues ranked by ComRank and AuthorityRank on 

DBLP-S. The results show that the ranks of venues generated by ComRank are all 
consistent with the recommended level by CCF. However, there are some disordered 
venues in AuthorityRank, which implies that AuthorityRank is sensitive to the num-
ber of papers. That is, AuthorityRank tends to rank a venue publishing many papers 
with a higher value. For example, AuthorityRank ranks PODS with a low value and 
DEXA with a relatively high value because PODS published not many papers and 
DEXA published so many papers. In contrast, ComRank considers the citation infor-
mation from homogeneous network. So ComRank avoids these shortcomings.  

4.5 Convergence and Stability Experiments 

For observing the convergence, we compare each cluster probability distribution with 
global distribution by average KL divergence [3]. Next, we use entropy to measure 
the unpredictability of cluster and prove the algorithm stability.  

ሺܸௗሻܮܭ݃ݒܣ  ൌ ଵே ∑ ሻሻே௡ୀଵܩ|௜ௗݒሺ݌||௡ሻܩ|௜ௗݒሺ݌௄௅ሺܦ  (14) 

ሺܸ௣ሻݕ݌݋ݎݐ݊ܧ݃ݒܣ  ൌ െ ଵே ∑ ∑ ௡൯|௏೛|௜ୀଵே௡ୀଵܩ௜௣หݒ൫݌ ൈ ݃݋݈  ௡൯ (15)ܩ௜௣หݒ൫݌
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Fig. 3. The change of AvgKL and AvgEntropy of nodes with iteration number 

As shown in Fig. 3(a) and (b), the convergence of our algorithm is faster than Net-
Clus. From the results shown in Fig. 3(c), (d) and (e), we can observe that ComClus 
achieves lower ݃ݕ݌݋ݎݐ݊ܧ . The reason is that ComClus prevents the negative effects 
of unimportant paper by the factor ߠ. Besides, in ComRank, the distribution informa-
tion of objects comes from heterogeneous and homogeneous relations. However, the 
distribution information of objects in NetClus is only from heterogeneous network. 
More information helps ComClus fast converge and achieve steady solution.  
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5 Conclusions 

In this paper, we proposed a new ranking-based clustering algorithm ComClus on 
heterogeneous information networks. Different from conventional clustering methods, 
ComClus can group different-typed objects on a hybrid network which includes the 
homogeneous network and heterogeneous relations together. Through applying prob-
ability information in ComClus, ComClus can also rank the importance of objects. 
The experiments on real datasets have demonstrated that our algorithm can generate 
more accurate cluster and rank with quicker and steadier convergence.  
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